

Major results

- NO_{x} suppresses SOA formation from α -pinene but may enhance SOA formation from other monoterpenes.
- SOA yields vary dramatically from different monoterpenes and different oxidants.
- This significant variation is not currently included in large-scale atmospheric chemistry models; its incorporation could improve predictions of SOA formation.

Background

Secondary organic aerosol (SOA) forms from the reaction of volatile organic compounds (VOCs) with atmospheric oxidants (OH, O₃, NO₃). Some of these oxidized organic products are much less volatile than their precursors and are able to form particles.

Estimates indicate that close to 90% of global VOC emissions originate from biogenic sources (i.e. trees), but anthropogenic pollution contributes to the majority of the oxidants in the atmosphere. NO_x (NO and NO_2) is formed in the process of combustion and contributes to both O_3 and NO_3 formation:

$$\begin{bmatrix} NO_2 + hv \rightarrow NO + O \\ O + O_2 + M \rightarrow O_3 + M \end{bmatrix}$$

*NO₃ is rapidly photolyzed and thus is relevant primarily at night

Once VOCs are oxidized, they undergo rapid radical chemistry (right) including self-reactions and reactions with NO or NO_2 . A variety of products are formed, but only some of them are able to condense into the particle phase.

Previous studies (Perraud, 2011; Presto, 2005) have observed that NO_2 suppresses SOA formation in the reaction of O_3 with α -pinene, which is taken to be representative of the NO₂ effect on SOA formation from ozonolysis of any monoterpene.

In both cases, the observed results are explained by the formation of organic nitrates (RONO₂), which are assumed to be less volatile than some other oxidation products. These organic nitrates can be formed either through $RO_2 + NO_x$ channels or as a direct result of NO_3 oxidation (formed from the O_3 and NO_2 present).

> (Right) FTIR spectra of SOA from the Perraud study show an increase in intensity of the three characteristic NO₃ peaks with increasing NO₂ concentration and a simultaneous decrease in intensity of the carbonyl peaks - indicating a shift in products.

Methods

A series of dark chamber experiments were performed in Reed College's environmental chamber (400 L Teflon bag) beginning December 2012 to assess the effects of NO_x on SOA formation from ozonolysis of different monoterpenes.

Reagents include:

- 300 ppb monoterpene (vapor from cooled liquid)
- 500 ppb O₃ (UV photolysis of ambient air)
- 0-1700 ppb NO₂ (calibrated cylinder)

Reagents are measured using GC-FID, optical O_3 detection, and chemiluminescence NO_x detection. Aerosol is measured with a scanning electrical mobility sizer (SEMS) and offline HPLC-ESI-MS.

Additional experiments were carried out in a 10000 L chamber at NCAR in Boulder, CO using 10-50 ppb monoterpene and comparable concentrations of N_2O_5 as a NO_3 radical source.

Monoterpenes studied:

α-pinene Δ -carene limonene β-pinene

These 4 VOCs encompass the dominant monoterpene emissions in the US.

SOA yield from ozonolysis of BVOC at varying NO₂ concentrations

Danielle Draper,¹ Delphine Farmer,² Yury Desyaterik,³ Juliane L. Fry¹ ¹Chemistry Department, Reed College, Portland, OR. ²Chemistry Department, Colorado State University, Fort Collins, CO. ³Department of Atmospheric Science, Colorado State University, Fort Collins, CO. Correspondence: draper.danielle@gmail.com, fry@reed.edu