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What we learned

- Sum of individual components of NOy and measured NOy match within 86%
- Steady state predicted N,O, and measured N,O, correlate well; steady state NO, was used in rate calculations due
to ambient concentrations being below the detection limit of the instrument (Cavity Ring Down, RONALD)
- NO, + BVOC reactions account for almost 50% of NO, loss during the day
- Predicted NO, + BVOC loss rates correlated with aerosol mass spectrometry (AMS) peak data provide a molar
yield of 23% NO, reaction to aerosol phase organic nitrate
- Chemical lonization Mass Spectrometry (CIMS) coupled to a FIGAERO analyzes m/z of gas and aerosol phases:
- Correlations against predicted NO, + isoprene show only gas phase C_H NO, production; no aerosol phase
isoprene nitrate product is measured
- Correlations against NO, + monoterpene show that products with the formula C._H._NO_ partition to
the aerosol phase
- Inorganic NO, analysis by ion chromatography shows dust events catalyze heterogeneous uptake of HNO,
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Figure 1 - Regional Map. SOAS site is denoted by + Figure 2 - NO comparison. Stacked spectra shows that the sum of individual NO, components

match total NOy measured

- Central Alabama is a humid subtropical environment with an average daily high temperature of 28.4 °C

- Emissions of SO, and NO_come from regional power plants in Alabama and Georgia. The Gaston Plant emits
19.5 square tons of SO, and 6.5 square tons of NO_per day (Figure 1)

-2 Alkyl NO_& % Peroxy NO, measured by Thermal Dissociation - Laser Induced Fluorescence, NO by
cavity ring down spectroscopy and HNO_, HONO & NO_by Monitor of AeRosol and Gas Analyzer (MARGA)

- The individual NO, components show that NO,, sum alkyl nitrates and sum peroxyalkyl nitrates are the main
contributors to NO, (Figure 2)

- Organonitrates make a substantial contribution to the NO, budget (Figure 2)

- Relatively constant contributions of NO, come from HNO_, and HONO

NO_/N_ O, and BVOC Concentrations at SOAS

- N,O, and NO, were measured using a cavity ring down

- Steady state loss rates of [N,O,]__ was calculated using
[NO.]_, [NO,]Jand K_ 4 NO_+ NO,
- Measured [N, O <l correlates well with [N,O.]_ values
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6/6/13 6/11/13 616113  6/21/13 6/26/13 7113 by a-pinene and B-pinene (Figure 4)
Central Daylight Time - [NO.] loss to BVOC can be calculated from this data
Figure 3 - Comparison of steady state and measured N, O, correlate well - [NO3]SStracks > ANs, most of which is in the aerosol phase

as seen in TD-LIF (Figure 5)
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Figure 4 - VOC concentrations over the SOAS campaign Figure 5 - 2AN spectra show that almost all alkyl nitrates are in aerosol phase
and steady state nitrate tracks well with alkyl nitrate production
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Figure 6 - Diurnal averaged NO, loss for June 1 - July 15. Pie graphs
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Predicted NO, + BVOC

- NO, loss during the day is due to photolysis, reaction with
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depict amount of loss and are sized by loading

Reaction A-Factor E/R k(298 K)
(molecules cm-3 s--I )
O3 + N02—> O2 + NO3 1.2x107" 2450
NO2 + NO3—> NZO5 2.7x10?% 11000
NO + N03—> 2NO2 1.5x10™ -170

Isoprene + NO,— Product 3.03x10" 446
a-pinene + NO, — Product 1.19x10"* -490

B-pinene + NO_, — Product 2.51x10™"?
Camphene + NO,— Product 6.6 x 10"

Myrcene + NO, — Product 1.1x10™"
Limonene + NO, — Product 1.22x10™"

NO and reaction with BVOCs

- Almost 25% of daytime NO, loss is from C__terpenes

(Figure 6)

- Almost 15% of nighttime NO_ loss is from Isoprene
- Close to half of nighttime NO, loss comes from a-pinene
- Modeled photolysis is normalized to solar radiation

values (W m™2) to account for cloud cover

- Predicted NO, loss is calculated using published

N,O; heterogeneous uptake

Aerosol Organonitrate (AMS, uglm?’)

NO, + BVOC values
(NO ) =k [VOC]INO._]_.
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- RONO __is correlated to measured mass

2, Cumulative

spectrometry data (Figure 7)
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Figure 7 - AMS data overlaid with predicted cumulative NO, |oss.

Black dots denote start and stop of predicted buildup of NO, loss
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Figure 8 - AMS organonitrate is strongly correlated with predicted

Figure 10 - Individual CIMS m/z peak correlations show C, H _NO., is the
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Figure 11 - Oxidant reaction rates with monoterpenes.
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Figure 9 - Gas phase CIMS product C_H NO, correlate with
with predlcted NO, loss to |soprene
- AMS NO_ mass loading in organomtrates is correlated

with RONO2 cumulative 1O MONoOterpenes with a slope of
0.23 giving a 23% molar yield of organonitrate from
NO, (Figure 8)

- Gas phase C_H NO, correlates well with NO_ loss
to isoprene (Figure 9)

- Aerosol phase CH NO, & C_ H NO_ were not detected
during SOAS

- Individual CIMS products correlated against predicted
NO, show which products are from NO, radical
reaction and which are not (ex. RO, + NO) using the
best fit analysis

- Gas phase is not well correlated suggesting another type

of reaction is taking place

- Aerosol phase shows C10H17N05 appears to be a product

of NO, reaction with an R’ value of 0.674

- OH dominates daytime oxidation rates with a peak of
0.6 ppbv/hr

- NO, rates are most dominant in the early morning
hours when O, concentrations are at their lowest
(blue and red trace respectively)

- Nighttime oxidation of total monoterpenes proceed at
approximately equal rates from NO_ and O,
(blue and red traces respectively)

- Monoterpenes used in calculations are a-pinene,
B-pinene, camphene, myrcene and limonene

Tk

O. +BVOC and
Ig(e of HNO,

Res ults (STAR)Program

eTez1alE:d RD-83539901

Heterogeneous uptake of HNO_ on Dust
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Figure 12 - PM and lon Chromatography spectra of the SOAS campaign
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- Two observed periods of high N03' are correlated
with high PM, _ aerosol mass loading
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- High NO3' is also correlated with high sea salt To o rlone 000 - masweghtedtajectory e
and non sea salt minerals

- Elemental analysis of the high sea salt events shows Figure 13 - Back trajectories of wind over the SOAS campaign
higher Na* content and contains Cl- (not shown)

- The second dust event shows no CI as well as higher  _podelling also shows continental United States sources
Ca*" and Si loading of mineral origin during the two events

- Wind trajectory modelling shows wind coming from  _Hjgh si and Ca?* loading during the second event
the Gulf of Mexico during the first event could leads us to believe the source is terrestrial in origin

explain the high ClI- content

Inorganic and Organic NO,_ fate
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Figure 15 - Diurnally averaged inorganic nitrate concentration (IC) compared
to alkyl nitrate concentrations (TD-LIF) show
similar average magnitudes
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Figure 14 - Loss rates of inorganic nitrate to dust via HNO, and nitrate
radical to BVOC

- Rate of NO3_ uptake is driven by PM, , via heterogeneous uptake of HNO, onto the surface of mineral aerosols
- An average value of 10% uptake (yHNos) for HNO, was used to calculate the rate of uptake
- Rate = z YHNO A HNO [HNO ]
- Organic and Inorganic rates are comparable in magnitude with different peak times over the
SOAS campaign (Figure 14)
- Inorganic NO, magnitudes are also comparable to alkyl nitrate magnitudes over the SOAS campaign (Figure 15)
- Organic rates calculated using (NO_ ) . and time (see Predicted NO, + BVOC)
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