Size-dependent molecular-level characterization of secondary organic aerosol from O_3 vs. NO_3 oxidation of monoterpenes

Juliane L. Fry, Danielle Draper, Hyungu Kang Reed College Alex Laskin, Julia Laskin, Bingbing Wang, Peng Lin Pacific Northwest National Lab Pacifichem, Honolulu, HI, Dec. 19, 2015

Background: NO₃ and monoterpenes (C₁₀ BVOCs)

$$\begin{bmatrix} NO_2 + hv \rightarrow NO + O \\ O + O_2 + M \rightarrow O_3 + M \end{bmatrix}$$
$$NO_2 + O_3 \rightarrow NO_3 + O_2$$
$$NO_3 + hv \rightarrow NO_2 + O$$

*NO₃ is rapidly photolyzed and thus present primarily at night, in equil with N_2O_5 :

$$NO_3 + NO_2 \leftrightarrow N_2O_5$$

BVOC lifetimes w.r.t. each oxidant

	BVOC	O ₃	NO ₃
	α-pinene	4.7 hr	5.4 min
]:	β-pinene	1.1 day	13 min
	Δ-carene	11 hr	3.7 min
	limonene	1.9 hr	2.7 min

Background: NOx/terpene ratio at which NO₃ oxidation begins to dominate over O₃

Because NO_3 oxidation is so much faster than O_3 , NO_3 oxidation dominates

Draper et al., ACP 2015

more likely to be NO_3 -dominated!

Atmos. Chem. Phys., 15, 1–15, 2015 www.atmos-chem-phys.net/15/1/2015/ doi:10.5194/acp-15-1-2015 © Author(s) 2015. CC Attribution 3.0 License.

A qualitative comparison of secondary organic aerosol yields and composition from ozonolysis of monoterpenes at varying concentrations of NO₂

D. C. Draper^{1,a}, D. K. Farmer², Y. Desyaterik³, and J. L. Fry¹

¹Department of Chemistry, Reed College, Portland, OR, USA

²Department of Chemistry, Colorado State University, Fort Collins, CO, USA

³Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA

acurrent address: Department of Chemistry, University of California Irvine, Irvine, CA, USA

Correspondence to: J. L. Fry (fry@reed.edu)

Draper et al., ACP 2015

Chamber SOA experiments:

Chamber SOA experiments: In mixed oxidant experiments, do O₃ and NO₃ form *separate* particle populations?

Impetus: In mixed oxidant ($O_3 \& NO_2$) SOA experiments with various BVOCs, we frequently observe bifurcation of size distributions!

O₃ only

Growth curves: where bifurcation occurs, the slower branch grows at similar rate to O₃-only!

*also note: the slopes of the 2 branches are not different by a factor of 2, ruling out double-charging effects

Are NO₃-oxidized and O₃-oxidized Δ -carene SOA poorly miscible?

Analyzing size-segregated SOA by nano-DESI-MS at Pacific Northwest Lab EMSL

1. Size segregated collections @ Reed chamber:

2. Composition analysis at EMSL

Micro-Orifice Uniform-Deposit Impactor (MOUDI)

Nanospray Desorption Electrospray Ionization High-Resolution Mass Spectrometry

Scanning Electron Microscope SEM

Measure size-segregated aerosol composition

Procedure:

- 1. Inject O_3 until chamber concentration stabilizes.
- 2. Start injecting NO₂ to form NO₃. (NO₂ + O₃ \rightarrow NO₃ + O₂)
- 3. Start adding VOC.
- 4. Wait until bifurcation matches MOUDI size bins, then collect sample.

For stages 8 & 9, repeat this 6x onto same substrate

12

Volume Distribution

Average mass spectra for each size branch

Dashed lines: m/z=300 and 600: nominal cutoffs between monomers, dimers, and trimers

2		Positive mode*	Intensity- weighted average m/z	Negative mode	Intensity- weighted average m/z
	am	Stage 6	447	Stage 6	337
* Na+ mass	mass di ved langer adducts langer	Stage 7	432	Stage 7	344
removed		Stage 8	444	Stage 8	382
from adducts		Stage 9	454	Stage 9	439

Difference mass spectrum (+ mode)

(Larger - Smaller Particles)

H:C versus O:C for all identified molecules in each size branch

O:C distribution of molecules in each size branch

Pure NO₃ and O₃ initiated SOA composition measurements: preliminary results

 \Rightarrow O:C of both branches apparently closer to that of NO₃ products

Pure NO₃ and O₃ initiated SOA composition measurements: preliminary results Positive Ion Mode 1.0 Stage 6 0.50.0 Relative Intensity O₃ single oxidant spectrum 0.5 0.0 NO₃ single oxidant spectrum 0.1 0.0 Stage 9 0.5 0.0 100 200 300 400 500 600 m/z

SEM impacted particles comparison (comparing smallest to largest stage)

Positive	O:C (weighted)
Stage 6	0.564
Stage 7	0.571
Stage 8	0.572
Stage 9	0.505

Negative	O:C (weighted)
Stage 6	0.709
Stage 7	0.710
Stage 8	0.667
Stage 9	0.619

Large Particles

Small Particles

Conclusions

Larger diameter, faster-growing aerosol population is more **oxidized** on average, and appears more liquid-like

while

Smaller diameter, slower-growing aerosol population has **more high-MW** components and appears more solid

=> These composition differences may or may not map to O₃ vs. NO₃ oxidation sources!

Thanks!

• Funding:

EMSL proposal #48347
EPA STAR #83539901
NOAA AC4 #NA13OAR4310070
Reed College Opportunity Grants

