

Nitrate radical initiated atmospheric particulate matter formation in forests:

Anthropogenically-triggered biogenic aerosol production

Juliane L. Fry, Associate Professor of Chemistry & Environmental Studies, Reed College, Portland, OR SEAS, Harvard University, 2. Mar 2018

What's to come in this talk:

- Why do we think that $NO₃$ chemistry is an important contributor to secondary organic aerosol (SOA) formation?
- Two short stories about $NO₃ + BVOC SOA$ formation:
	- $-$ Estimating SOA yields from $NO₃$ + isoprene based on nighttime aircraft power plant plume transects during SENEX 2013
	- Resolving the mystery of α -pinene's anomalously low $NO₃$ SOA yield with computational comparison of $RO₂$ fate from $NO₃ + \alpha$ -pinene vs. $NO₃ + \Delta$ -carene

Global organic carbon budgets and biogenic SOA

Oxidation of isoprene & monoterpenes $(C_{10}$ BVOCs)

$$
\begin{bmatrix} NO_2 + hv & \longrightarrow NO + O \\ O + O_2 + M & \longrightarrow O_3 + M \end{bmatrix}
$$

NO₂ + O₃ \longrightarrow NO₃ + O₂
NO₃ + hv \longrightarrow NO₂ + O

 $*NO₃$ is rapidly photolyzed and thus active primarily at night

BVOC lifetimes w.r.t. each oxidant

@ "typical" conc's: 12-h daytime avg [OH]: $2x10^6$ #/cm³; 24 h avg [O₃]: $7x10^{11}$ #/cm³; 12 h nighttime avg $[NO_3]$: $5x10^8$ #/cm³ = 20 ppt (Atkinson & Arey, 2003)

Oxidation of isoprene & monoterpenes $(C_{10}$ BVOCs)

$$
\begin{bmatrix} NO_2 + hv & \longrightarrow NO + O \\ O + O_2 + M & \longrightarrow O_3 + M \end{bmatrix}
$$

NO₂ + O₃ \longrightarrow NO₃ + O₂
NO₃ + hv \longrightarrow NO₂ + O

 $*NO₃$ is rapidly photolyzed and thus active primarily at night

BVOC lifetimes w.r.t. each oxidant

@ "typical" conc's: 12-h daytime avg [OH]: $2x10^6$ #/cm³; 24 h avg [O₃]: $7x10^{11}$ #/cm³; 12 h nighttime avg $[NO_3]$: $5x10^8$ #/cm³ = 20 ppt (Atkinson & Arey, 2003)

SOA from isoprene & monoterpenes $(C_{10}$ BVOCs)

 $NO_2 + hv \rightarrow NO + O$ $O + O_2 + M \longrightarrow O_3 + M$ $NO₂ + O₃ \longrightarrow NO₃ + O₂$

 $NO_3 + hv \rightarrow NO_2 + O$

 $*NO₃$ is rapidly photolyzed and thus active primarily at night

BVOC lifetimes w.r.t. each oxidant

SOA yields ($@$ ~10 ug m⁻³)

24 h avg $[O_3]$: $7x10^{11}$ #/cm³; 12 h nighttime avg $[NO_3]$:
Ex108 #/cm3 = 20 ppt (Atkinson 8, Arov, 2002) ω "typical" conc's: 12-h daytime avg [OH]: $2x10^6$ #/cm³; $5x10^8$ #/cm³ = 20 ppt (Atkinson & Arey, 2003)

KKroll, EST 2006; EEddingsaas ACP 2012; GGriffin JGR 1999; YYu JAC 1999; KLKleindienst, GRL 2006; Shilling, ACP 2008; vH von Hessberg, APC 2009; Leungsakul ES&T 2009; ^NNg et al, ACP 2008; RRollins ACP 2009; F⁰⁹Fry ACP 2009; F11Fry ACP 2011; F14Fry EST 2014; BBoyd et al., EST 2017

SOA from isoprene & monoterpenes $(C_{10}$ BVOCs)

BVOC lifetimes w.r.t. each oxidant

SOA yields (@ ~10 ug m⁻³)

24 h avg $[O_3]$: $7x10^{11}$ #/cm³; 12 h nighttime avg $[NO_3]$:
Ex108 #/cm3 = 20 ppt (Atkinson 8, Arov, 2002) ω "typical" conc's: 12-h daytime avg [OH]: $2x10^6$ #/cm³; $5x10^8$ #/cm³ = 20 ppt (Atkinson & Arey, 2003)

KKroll, EST 2006; ^EEddingsaas ACP 2012; ^GGriffin JGR 1999; ^YYu JAC 1999; KLKleindienst, GRL 2006; Shilling, ACP 2008; vH von Hessberg, APC 2009; Leungsakul ES&T 2009; ^NNg et al, ACP 2008; RRollins ACP 2009; F⁰⁹Fry ACP 2009; F11Fry ACP 2011; F14Fry EST 2014; BBoyd et al., EST 2017

Regional modeling & organonitrate aerosol observations show $NO₃$ oxidation is an important source of SOA

Pye et al, ES&T 2015; Xu et al, ACP 2015

Can diurnal patterns in AMS factors give clues about SOA sources?

Short story #1: Assess NO₃ + isoprene SOA yield from aircraft measurements in regions of rapid $NO₃$ oxidation of isoprene: power plant plumes

Gorgas steam plant, Parrish, Alabama

SENEX 2013: 21 research flights

Aircraft plume transects

Screening plumes: Verify that aerosol increases were produced only by $NO₃$ + isoprene

- (1) is all of the **NO3 reactivity** in plumes due to reaction with isoprene? \vee Based on observed isoprene: monoterpene ratio
	- and known rate constants, yes.
- (2) is all of the change in **aerosol organic mass concentration** during these plumes due to $NO₃$ + isoprene reactions?
- (1) is all of the change in **aerosol nitrate mass concentration** due to $NO₃$ + isoprene reactions?

(2) is all of the change in **aerosol organic mass concentration** during these plumes due to $NO₃$ + isoprene reactions?

Org:NO₃ = 2.7 \Rightarrow Would need 10 (!) more O's on this molecule to get Org:NO₃ to 5! \Rightarrow Or, co-condensing organics? Loss of NO₃ functional groups?

Screening plumes: Verify that aerosol increases were produced only by $NO₃$ + isoprene

- (1) is all of the **NO3 reactivity** in plumes due to reaction with isoprene? \vee Based on observed isoprene: monoterpene ratio
	- and known rate constants, yes.
- (2) is all of the change in **aerosol organic mass concentration** during these plumes due to $NO₃$ + isoprene reactions? X Based on very high Org:NO₃ ratios and correlation with total aerosol
	- mass, likely other organics contribute
- (1) is all of the change in **aerosol nitrate mass concentration** due to $NO₃$ + isoprene reactions?

(3) is all of the change in **aerosol nitrate mass concentration** due to $NO₃$ + isoprene reactions?

Previous studies report NO_2 ⁺:NO⁺ ratios for organic nitrates typically 2-3 times lower than for NH_4NO_3 (Fry et al., 2009, 2011; Bruns et al., 2010; Farmer et al., 2010; Liu et al., 2012); this can be used to apportion organic (pRONO2) vs. inorganic (NH₄NO₃) nitrate. **Conclusion: no sign of signficant inorganic nitrate interference in plumes.**

Screening plumes: Verify that aerosol increases were produced only by $NO₃$ + isoprene

(1) is all of the **NO3 reactivity** in plumes due to reaction with isoprene? \vee Based on observed

isoprene: monoterpene ratio and known rate constants, yes.

(2) is all of the change in **aerosol organic mass concentration** during these plumes due to $NO₃$ + isoprene reactions? X Based on absurd Org:NO₃ ratios and correlation with aerosol mass, likely

other organics contribute

(1) is all of the change in **aerosol nitrate mass concentration** due to $NO₃$ + isoprene reactions?

Based on NO^+ :NO₂⁺ ratios, all increase is So, we will calculate SOA mass yields as: $\qquad \qquad$ organic nitrate (& pRONO₂ is separable)

$$
Y_{SOA,mass} = \frac{(pRONO2_{plume} \pm SD_{pRONO2plume}) - (pRONO2_{bkg} \pm SD_{pRONO2bkg})}{-[(isop_{hlume} \pm SD_{isomhlume}) - (isop_{bkg} \pm SD_{isophka})]} \times 3 \times \frac{329pt}{\mu g m^{-3}}
$$

3: nitrate mass + associated organics, assumed to be approximately double the nitrate mass. Requires \sim 4 additional oxygens: e.g. a tri-hydroperoxynitrate

Observed SOA yields are large; higher at longest plume ages

Chamber-based SOA mass yield estimates: 12-14% (Ng et al., 2008; Rollins et al., 2009)

Plume age estimates based on O_3/NO_2 ratio clock and model

=> What yield number should be used in models?

What isoprene products are likely contributing to SOA?

Could $NO₃$ +isoprene products be a significant contributor to organic aerosol at the surface?

Conclusions about NO₃ + isoprene SOA yields

- $NO₃$ + isoprene yields assessed from aircraft measurements increased with plume age, to as much as 10x (!) the typically assumed yield in models
- This reaction may contribute substantially to an identified organic aerosol factor comprising 40% of total OA at the surface (measured at the SOAS ground site in central Alabama)
- In warm, rapidly industrializing regions of the world where isoprene emissions are large and NO_x emissions are on the rise (e.g. parts of China, India), this SOA source may be increasing

Plans for summer 2018 SAPHIR chamber $NO₃$ + isoprene SOA study

• Detailed investigation of NO₃ + isoprene reaction mechanism under atmospheric conditions $-$ Compare $O₃$ vs NO₃ $-$ Compare initial RO₂ reactions: RO₂ vs. HO₂ – With/without seed aerosol, varying pH? 30 July - 26 August 2018 @ Jülich, Germany

Observation #1a: SOA mass yield for O_3 + BVOC at varying [NO₂] is suppressed by NO₂ only for α-pinene

Draper et al., ACP 2015

Observation #1b: Product mass distributions measured by offline HPLC-ESI-MS differ at high m/z

Observation #2: α-pinene vs. $Δ$ -carene SOA yield difference is **NOT** affected by RO₂ reaction partner, inorganic seed

 \mathbf{I}

Preliminary yield data, analysis in progress. Collaboration with **Jimenez group** at CU Boulder. Kang et al., in preparation, 2018.

Hyungu Kang ('15)

OOH Observation #3: $NO₃ + \alpha$ -pinene under high [HO₂] shows low yield of ROOH "termination" channel, high yield of pinonaldehyde

 $+\Omega$

 $\overline{\mathcal{L}}$ $\overline{\mathcal{L}}$ $\overline{\mathcal{C}}$ $\overline{\$

 $O₂$

 $+HO₂$

ONO2

O

~??% yield **~70% yield**

(PTR-MS)

O

pinonaldehyde

ONO₂

~30% yield **~30% yield**

(TOF-CIMS)

O

=> Seems reasonable that this high-volatility favored channel would result in low SOA yield. But, why doesn't Δ-carene similarly yield primarily **caronaldehyde and thus have low yield?**

Tran Nguyen, Becky Schwantes, Paul Wennberg @ CIT Pawel Misztal & rest of the PTR-ToF-MS crew ω FIXCIT campaign

 $+NO₂$

First attempts to calculate nitrooxy-RO₂ structures using Spartan

 $RO₂$ can rapidly auto-oxidize to yield low-volatility products...

... while in α-pinene nitrato-RO₂, no H-abstraction is possible, because of structural constraints

Could this be the reason for α-pinene's anomalous behavior?

Katie Stellmach $('18)$

Upping the computational game with the COPENHEL supergroup: Calculating reaction barriers for each $RO₂'s$ options

1. The rates for all accessible H-shift reactions are below 10^{-4} s⁻¹ for both **monoterpenes.**

> => The peroxy radicals thus have lifetimes long enough to undergo bimolecular reactions, which occur on a timescale of \sim 0.01 and 100s

Kristian Møller

Theo Kurtén

Henrik Kjaergaard

Upping the computational game with the COPENHEL supergroup: Calculating reaction barriers for each $RO₂'s$ options

Kristian Møller

Theo Kúrten

Henrik Kjaergaard

- **1.** The rates for all accessible H-shift reactions are below 10⁻⁴ s⁻¹ for both **monoterpenes.**
- 2. However, the alkoxy-forming pathway is thermodynamically accessible for both **monoterpenes.**

=> What is the fate of these nitrooxy-alkoxy radicals (RO[.]) from $α$ -pinene and $Δ$ -carene?

Calculated bond scission reaction barriers for alkoxy radicals

Bond scission transition states

Calculated reaction barriers in kcal mol⁻¹ (zero-point corrected ω B97X-D/aug-cc-pVTZ electronic energy differences between the lowest-energy transition states and reactants)

Kurtén, et al., JPC Letters 2017.

Based on these different bond scission pathways, α pinene will produce primarily pinonaldehyde...

... while most Δ -carene will retain the nitrate group and may go on to later-generation H-shifts

Conclusions on molecular structure and NO3 + monoterpene SOA

• Different preferred alkoxy scission pathways may explain huge SOA yield difference between α-pinene and Δ-carene

• Unfortunately, this means one can't really lump monoterpenes in SOA mechanisms

Thank you:

- Collaborators for the $NO₃$ + isoprene analysis @ NOAA ESRL **Chemical Sciences Division & CU Boulder**
- Collaborators for the $NO_3 + \alpha$ -pinene vs. Δ -carene calculations @ Uni Copenhagen and Uni Helsinki Want to talk more?
- JLF Funding:

Julie Fry: fry@reed.edu

NOAA AC4 #NA13OAR4310070; EPA STAR Program #RD-83539901

Fulbright U.S. Scholar grant in the Netherlands

