

Nitrate radical initiated atmospheric particulate matter formation in forests:

Anthropogenically-triggered biogenic aerosol production

Juliane L. Fry, Associate Professor of Chemistry & Environmental Studies, Reed College, Portland, OR SEAS, Harvard University, 2. Mar 2018

What's to come in this talk:

- Why do we think that NO₃ chemistry is an important contributor to secondary organic aerosol (SOA) formation?
- Two short stories about NO₃ + BVOC SOA formation:
 - Estimating SOA yields from NO₃ + isoprene based on nighttime aircraft power plant plume transects during SENEX 2013
 - Resolving the mystery of α -pinene's anomalously low NO₃ SOA yield with computational comparison of RO₂ fate from NO₃ + α -pinene vs. NO₃ + Δ -carene

Global organic carbon budgets and biogenic SOA

Oxidation of isoprene & monoterpenes (C₁₀ BVOCs)

$$\begin{bmatrix} NO_2 + hv \longrightarrow NO + O \\ O + O_2 + M \longrightarrow O_3 + M \end{bmatrix}$$
$$NO_2 + O_3 \longrightarrow NO_3 + O_2$$
$$NO_3 + hv \longrightarrow NO_2 + O$$

 $*NO_3$ is rapidly photolyzed and thus active primarily at night

BVOC lifetimes w.r.t. each oxidant

BVOC	ОН	O ₃	NO ₃
isoprene	1.4 hr	1.3 day	48 min
α-pinene	2.7 hr	4.7 hr	5.4 min
β-pinene	1.9 hr	1.1 day	13 min
Δ-carene	1.6 hr	11 hr	3.7 min
limonene	51 min	1.9 hr	2.7 min

@ "typical" conc's: 12-h daytime avg [OH]: 2x10⁶ #/cm³; 24 h avg [O₃]: 7x10¹¹ #/cm³; 12 h nighttime avg [NO₃]: 5x10⁸ #/cm³ = 20 ppt (Atkinson & Arey, 2003)

Oxidation of isoprene & monoterpenes (C₁₀ BVOCs)

$$\begin{bmatrix} NO_2 + hv \longrightarrow NO + O \\ O + O_2 + M \longrightarrow O_3 + M \end{bmatrix}$$
$$NO_2 + O_3 \longrightarrow NO_3 + O_2$$
$$NO_3 + hv \longrightarrow NO_2 + O$$

 $*NO_3$ is rapidly photolyzed and thus active primarily at night

BVOC lifetimes w.r.t. each oxidant

BVOC	ОН	03	NO ₃
isoprene	1.4 hr	1.3 day	48 min
α-pinene	2.7 hr	4.7 hr	5.4 min
β-pinene	1.9 hr	1.1 day	13 min
Δ-carene	1.6 hr	11 hr	3.7 min
limonene	51 min	1.9 hr	2.7 min

@ "typical" conc's: 12-h daytime avg [OH]: 2x10⁶ #/cm³; 24 h avg [O₃]: 7x10¹¹ #/cm³; 12 h nighttime avg [NO₃]: 5x10⁸ #/cm³ = 20 ppt (Atkinson & Arey, 2003)

SOA from isoprene & monoterpenes (C₁₀ BVOCs)

 $\begin{bmatrix} NO_2 + hv \longrightarrow NO + O \\ O + O_2 + M \longrightarrow O_3 + M \end{bmatrix}$ $NO_2 + O_3 \longrightarrow NO_3 + O_2$ $NO_3 + hv \longrightarrow NO_2 + O$

 $*NO_3$ is rapidly photolyzed and thus active primarily at night

BVOC lifetimes w.r.t. each oxidant

SOA yields (@ ~10 ug m⁻³)

BVOC	ОН	O ₃	NO ₃	ОН	O ₃	NO ₃
isoprene	1.4 hr	1.3 day	48 min	2% ^K	1% ^{KL}	10% ^{N,R}
α-pinene	2.7 hr	4.7 hr	5.4 min	8% ^E	10% ^s	0% ^{F14}
β-pinene	1.9 hr	1.1 day	13 min	3% ^G	20% ^{vH}	50% ^{F09}
Δ-carene	1.6 hr	11 hr	3.7 min	3% ^G	10% ^{G,Y}	50% ^{F14}
limonene	51 min	1.9 hr	2.7 min	9% ^G	40% ^L	40% ^{F11} 170% ^B

@ "typical" conc's: 12-h daytime avg [OH]: 2x10⁶ #/cm³;
24 h avg [O₃]: 7x10¹¹ #/cm³; 12 h nighttime avg [NO₃]:
5x10⁸ #/cm³ = 20 ppt (Atkinson & Arey, 2003)

^KKroll, EST 2006; ^EEddingsaas ACP 2012; ^GGriffin JGR 1999; ^YYu JAC 1999; ^{KL}Kleindienst, GRL 2006; ^SShilling, ACP 2008; ^{vH}von Hessberg, APC 2009; ^LLeungsakul ES&T 2009; ^NNg et al, ACP 2008; ^RRollins ACP 2009; ^{F09}Fry ACP 2009; ^{F11}Fry ACP 2011; ^{F14}Fry EST 2014; ^BBoyd et al., EST 2017

SOA from isoprene & monoterpenes (C₁₀ BVOCs)

BVOC lifetimes w.r.t. each oxidant

SOA yields (@ ~10 ug m⁻³)

BVOC	ОН	03	NO ₃	ОН	O ₃	NO ₃
isoprene	1.4 hr	1.3 day	48 min	2% ^K	1% ^{KL}	10% ^{N,R}
α-pinene	2.7 hr	4.7 hr	5.4 min	8% ^E	10% ^s	0% ^{F14}
β-pinene	1.9 hr	1.1 day	13 min	3% ^G	20% ^{vH}	50% ^{F09}
Δ-carene	1.6 hr	11 hr	3.7 min	3% ^G	10% ^{G,Y}	50% ^{F14}
limonene	51 min	1.9 hr	2.7 min	9% ^G	40% ^L	40% ^{F11} 170% ^B

@ "typical" conc's: 12-h daytime avg [OH]: 2x10⁶ #/cm³;
24 h avg [O₃]: 7x10¹¹ #/cm³; 12 h nighttime avg [NO₃]:
5x10⁸ #/cm³ = 20 ppt (Atkinson & Arey, 2003)

^KKroll, EST 2006; ^EEddingsaas ACP 2012; ^GGriffin JGR 1999; ^YYu JAC 1999; ^{KL}Kleindienst, GRL 2006; ^SShilling, ACP 2008; ^{vH}von Hessberg, APC 2009; ^LLeungsakul ES&T 2009; ^NNg et al, ACP 2008; ^RRollins ACP 2009; ^{F09}Fry ACP 2009; ^{F11}Fry ACP 2011; ^{F14}Fry EST 2014; ^BBoyd et al., EST 2017

Regional modeling & organonitrate aerosol observations show NO₃ oxidation is an important source of SOA

Pye et al, ES&T 2015; Xu et al, ACP 2015

Can diurnal patterns in AMS factors give clues about SOA sources?

Short story #1: Assess NO₃ + isoprene SOA yield from aircraft measurements in regions of rapid NO₃ oxidation of isoprene: power plant plumes

Gorgas steam plant, Parrish, Alabama

SENEX 2013: 21 research flights

Aircraft plume transects

Screening plumes: Verify that aerosol increases were produced only by NO₃ + isoprene

- (1) is all of the NO₃ reactivity in plumes due to reaction
 ✓ Based on observed isoprene: monoterpene ratio
 - and known rate constants, yes.
- (2) is all of the change in aerosol organic mass concentration during these plumes due to NO₃ + isoprene reactions?
- (1) is all of the change in **aerosol nitrate mass concentration** due to NO₃ + isoprene reactions?

(2) is all of the change in **aerosol organic mass concentration** during these plumes due to NO_3 + isoprene reactions?

Org:NO₃ = 2.7 \Rightarrow Would need 10 (!) more O's on this molecule to get Org:NO₃ to 5! \Rightarrow Or, co-condensing organics? Loss of NO₃ functional groups?

Screening plumes: Verify that aerosol increases were produced only by NO₃ + isoprene

- (1) is all of the NO₃ reactivity in plumes due to reaction
 ✓ Based on observed
 ✓ isopreper monoterpane ratio
 - isoprene: monoterpene ratio and known rate constants, yes.
- (2) is all of the change in aerosol organic mass
 concentration during these plumes due to NO₃ +
 isoprene reactions?
 X Based on very high Org:NO₃ ratios and correlation with total aerosol
 - mass, likely other organics contribute
- (1) is all of the change in **aerosol nitrate mass concentration** due to NO_3 + isoprene reactions?

(3) is all of the change in **aerosol nitrate mass concentration** due to NO_3 + isoprene reactions?

Previous studies report NO_2^+ :NO⁺ ratios for organic nitrates typically 2–3 times lower than for NH_4NO_3 (Fry et al., 2009, 2011; Bruns et al., 2010; Farmer et al., 2010; Liu et al., 2012); this can be used to apportion organic (pRONO2) vs. inorganic (NH_4NO_3) nitrate. **Conclusion: no sign of significant inorganic nitrate interference in plumes.**

Screening plumes: Verify that aerosol increases were produced only by NO₃ + isoprene

(1) is all of the NO₃ reactivity in plumes due to reaction
 ✓ Based on observed
 ✓ isoprene: monoterpene ratio

isoprene: monoterpene ratio and known rate constants, yes.

(2) is all of the change in aerosol organic mass
 concentration during these plumes due to NO₃ +
 isoprene reactions?
 X Based on absurd Org:NO₃ ratios and correlation with aerosol mass, likely

other organics contribute

(1) is all of the change in **aerosol nitrate mass** concentration due to NO_3 + isoprene reactions?

✓ Based on NO⁺:NO₂⁺ ratios, all increase is organic nitrate (& pRONO₂ is separable)

So, we will calculate SOA mass yields as:

$$Y_{SOA,mass} = \frac{(pRONO2_{plume} \pm SD_{pRONO2plume}) - (pRONO2_{bkg} \pm SD_{pRONO2bkg})}{-[(isop_{plume} \pm SD_{isopplume}) - (isop_{bkg} \pm SD_{isopbkg})]} \times 3 \times \frac{329ppt}{\mu g \ m^{-3}}$$

3: nitrate mass + associated organics, assumed to be approximately double the nitrate mass. Requires ~4 additional oxygens: e.g. a tri-hydroperoxynitrate

Observed SOA yields are large; higher at longest plume ages

plume number	plume time (UTC)	SOA molar yield (fraction) [± SD]	so	DA mass yield (fraction) [± SD]	plume age from O ₃ / NO ₂ clock assuming S=1 (hours)	Likely NOx origin & altitude (m)
1	7/2/13 2:18	0.09 [0.05]		0.25 [0.14]	2.5	Greene County @ 540 m
2	7/2/13 2:20	0.07		0.21	1.5	ibid
3	7/2/13 2:21	0.12 [0.10]		0.32 [0.27]	1.5	ibid
4	7/2/13 3:03	0.13		0.36	1.5	Gaston @ 720 m
5	7/2/13 3:55	0.06 [0.07]		0.17 [0.20]	1.4	Miller / Gorgas @ 690 m
6	7/2/13 4:34	0.05 [0.02]		0.15 [0.07]	2	ibid
7	7/2/13 4:37	0.10 [0.11]		0.26 [0.31]	5.5	ibid
8	7/2/13 4:39	0.16 [0.10]		0.45 [0.26]	5.8	Miller / Gorgas @ 1120 m
9	7/2/13 5:04	0.28 [0.14]		0.77 [0.39]	6.3	Gaston @ 1280 m

Chamber-based SOA mass yield estimates: 12-14% (Ng et al., 2008; Rollins et al., 2009)

Plume age estimates based on O_3/NO_2 ratio clock and model

=> What yield number should be used in models?

What isoprene products are likely contributing to SOA?

Likely 1st-generation product: Based on ground contribution O:C elemental method (Pankow & Asher, ratio (excluding 2008) P_{vap}, predicted C*: NO₃): HOO 2.5 x 10⁴ µg m⁻³ 0.4 ONO₂ This suggests that 1st Possible 2nd-generation products: generation products cannot contribute, but 2nd-gen can HOO No oligomerization required 0.38 μg m⁻³ 0.8 ONO₂ ONO₂ OOH Or: HOO OOH 0.20 μg m⁻³ 1.2 ONO₂ OOH

Could NO₃+isoprene products be a significant contributor to organic aerosol at the surface?

Conclusions about NO₃ + isoprene SOA yields

- NO₃ + isoprene yields assessed from aircraft measurements increased with plume age, to as much as 10x (!) the typically assumed yield in models
- This reaction may contribute substantially to an identified organic aerosol factor comprising 40% of total OA at the surface (measured at the SOAS ground site in central Alabama)
- In warm, rapidly industrializing regions of the world where isoprene emissions are large and NO_x emissions are on the rise (e.g. parts of China, India), this SOA source may be increasing

Plans for summer 2018 SAPHIR chamber NO_3 + isoprene SOA study

 Detailed investigation of NO₃ + isoprene reaction mechanism under atmospheric conditions - Compare O₃ vs NO₃ - Compare initial RO₂ reactions: RO₂ vs. HO₂ – With/without seed aerosol, varying pH? 30 July – 26 August 2018 @ Jülich, Germany

Observation #1a: SOA mass yield for O_3 + BVOC at varying [NO₂] is suppressed by NO₂ **only** for α -pinene

Draper et al., ACP 2015

Observation #1b: Product mass distributions measured by offline HPLC-ESI-MS differ at high m/z

Observation #2: α -pinene vs. Δ -carene SOA yield difference is **NOT** affected by RO₂ reaction partner, inorganic seed

L

	No.	Regime	SOA yield (AMS)	NO ₃ :Org
+	6	NO ₃ +RO ₂	3%	0.08
	14	RO ₂ +RO ₂ , seeded	1%	0.10
α-pinene	17	HO ₂ +RO ₂	2%	0.17
_	11c	RO ₂ +RO ₂	27%	0.09
I	13	NO ₃ +RO ₂	35%	0.15
	16	HO_2 +RO ₂ , seeded	37%	0.12
	18c	RO ₂ +RO ₂ , seeded	40%	0.06
	19	HO_2 +RO ₂ , seeded	25%	0.14
-	22c	$RO_2 + RO_2$	104%	0.07
∆-carene	23	$HO_2 + RO_2$	21%	0.15

Preliminary yield data, analysis in progress. Collaboration with **Jimenez group** at CU Boulder. Kang et al., in preparation, 2018.

Hyungu Kang ('15) Observation #3: NO₃ + α -pinene under high [HO₂] shows low yield of ROOH "termination" channel, high yield of pinonaldehyde

ONO₂

+HO₂

ONO₂

 $+O_{2}$

ONO₂

ONO₂

~30% vield

(TOF-CIMS)

70% vield

(PTR-MS)

pinonaldehyde

=> Seems reasonable that this high-volatility favored channel would result in low SOA yield. But, why doesn't Δ-carene similarly yield primarily caronaldehyde and thus have low yield?

Tran Nguyen, Becky Schwantes, Paul Wennberg @ CIT Pawel Misztal & rest of the PTR-ToF-MS crew @ FIXCIT campaign

 $+NO_3$

First attempts to calculate nitrooxy-RO₂ structures using Spartan

Hypothesis: Δ -carene nitrato-RO₂ can rapidly auto-oxidize to yield low-volatility products... ... while in α -pinene nitrato-RO₂, no H-abstraction is possible, because of structural constraints

Could this be the reason for α -pinene's anomalous behavior?

Katie Stellmach ('18) Upping the computational game with the COPENHEL supergroup: Calculating reaction barriers for each RO₂'s options

1. The rates for all accessible H-shift reactions are below 10⁻⁴ s⁻¹ for both monoterpenes.

=> The peroxy radicals thus have lifetimes long enough to undergo bimolecular reactions, which occur on a timescale of ~ 0.01 and 100s

Kristian Møller

Theo Kurtén

Henrik Kjaergaard

Upping the computational game with the COPENHEL supergroup: Calculating reaction barriers for each RO₂'s options

Kristian Møller

Theo Kúrten

Henrik Kjaergaard

- 1. The rates for all accessible H-shift reactions are below 10⁻⁴ s⁻¹ for both monoterpenes.
- 2. However, the alkoxy-forming pathway is thermodynamically accessible for both monoterpenes.

=> What is the fate of these nitrooxy-alkoxy radicals (RO·) from α -pinene and Δ -carene?

Calculated bond scission reaction barriers for alkoxy radicals

 α -pinene

Bond scission transition states

Calculated reaction barriers in kcal mol⁻¹ (zero-point corrected ωB97X-D/aug-cc-pVTZ electronic energy differences between the lowest-energy transition states and reactants)

Kurtén, et al., JPC Letters 2017.

Based on these different bond scission pathways, α pinene will produce primarily pinonaldehyde...

...while most Δ -carene will retain the nitrate group and may go on to later-generation H-shifts

Conclusions on molecular structure and NO₃ + monoterpene SOA

 Different preferred alkoxy scission pathways may explain huge SOA yield difference between α-pinene and Δ-carene

• Unfortunately, this means one can't really lump monoterpenes in SOA mechanisms

Thank you:

- Collaborators for the NO₃ + isoprene analysis @ NOAA ESRL Chemical Sciences Division & CU Boulder
- Collaborators for the NO₃ + α-pinene vs. Δ-carene calculations
 @ Uni Copenhagen and Uni Helsinki
 Want to talk more?
- JLF Funding:

Want to talk more? Julie Fry: <u>fry@reed.edu</u>

NOAA AC4 #NA13OAR4310070; EPA STAR Program #RD-83539901 Fulbright U.S. Scholar grant in the Netherlands

