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Our	piece	of	the	puzzle:	
determining	NOx	fate	

=>	Measure	organonitrate	and	inorganic	
nitrate	gas/aerosol	par66oning	
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SOA Chemistry 101: What are the possible effects of 
NOx on SOA formation? 
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Volatile Organic Compound (VOC) 

1) [NO] controls fate of RO2 radical: can 
enhance or suppress SOA depending on 
relative volatilities of products 
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Oxidant 

Volatile Organic Compound (VOC) 

1) [NO] controls fate of RO2 radical: can 
enhance or suppress SOA depending on 
relative volatilities of products 
 
2) Adds an additional mechanism of 
aerosol formation: NO3 + BVOC 

= NO3 

NO2 + O3 à 
  NO3 + O2 

mostly nighttime 
because NO3 
photolyzes rapidly 

SOA Chemistry 101: What are the possible effects of 
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What	is	the	role	of	NOx	in	oxida5ve	SOA	forma5on?	
Net	suppression	or	enhancement?	

NO3 +  

RONO2 

aerosol 

NOx   
Climate 
effects? 

NO + RO2  

NO2	+	O3	à	
		NO3	+	O2	

=>	Do	these	day	(OH	ox)	&	night	(NO3	ox)	mechanisms	make	two	dis6nct	classes	
of	nitrates,	with	different	consequences	for	SOA	forma6on?	
=>	Could	this	rela6vely	less	well-studied	but	rapid	NO3-ini6ated	chemistry	play	
an	important	role	in	new	par6cle	growth,	especially	in	high-BVOC	plumes?	
=>	How	does	this	chemistry	compete	with	other	fates	of	NOx?	
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OH + BVOC  



Some	mechanism	papers:	Winterhalter	et	al.,	O3	+	bpin,	J.	Atm.	Chem.	2000;	Pinho	et	al.,	OH	+	bpin,	
J.	Atm.	Chem.	2007;	Fry	et	al.,	NO3	+	bpin,	ACP	2009		

SOA Chemistry 201: What are the effects of different 
oxidants on product structures? 

Representa5ve	BVOC:	β-pinene: 	
	 		

X
X

X : radical oxidant

X

O2

O2

OH

ONO2

O2NO

OOH

X
X

X : radical oxidant

X

O2

O2

OH

ONO2

O2NO

OOH

Radical	(X.)	reac5on	proceeds	via	acack	on	double	
bond,	to	yield	the	most	subs5tuted	carbon	radical,	
which	rapidly	picks	up	O2	and	becomes	a	peroxy	radical	
(“RO2”):	

So,	OH	radicals	make	
more	of	these	nitrates:	

While	NO3	radicals	make	
more	of	these	nitrates:	

And	O3	isn’t	a	radical	and	
makes	more	of	a	mess:	
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Some	mechanism	papers:	Winterhalter	et	al.,	O3	+	bpin,	J.	Atm.	Chem.	2000;	Pinho	et	al.,	OH	+	bpin,	
J.	Atm.	Chem.	2007;	Fry	et	al.,	NO3	+	bpin,	ACP	2009		

SOA Chemistry 201: What are the effects of different 
oxidants on product structures? 

So,	OH	radicals	make	
more	of	these	nitrates:	
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Who	cares??	

Primary/secondary	nitrates	
hang	around	~	forever	
(longer	than	par6cle	life6me)	

At	atmospherically	relevant	
humidity	&	pH,	ter6ary	
nitrates	hydrolyze	rapidly	
to	HNO3!	

Darer	et	al.,	ES&T	2011,	
Hu	et	al.,	ACP	2011	

Rindelaub,	et	al.,	Atm.	Env.	2014;	
Hu	et	al.,	ACP	2011:	τ	<	1	hr!	
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NO3	+	BVOC			
organoNO3	SOA	

+	

which	BVOCs?	

=>	How	much	of	NO3	
loss	goes	to	reac5on	
with	BVOC	over	the	
diurnal	cycle?	
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⇒ Even	during	the	day5me,	~50%	of	NO3	losses		
are	to	reac5on	with	BVOCs!	

Ayres	et	al.,	ACP	2015	

NO3	losses:	Reac5on	with	BVOC	vs.	
photolysis/NO	reac5ons	
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Demonstra5ng	that	NO3+BVOC	produces	
substan5al	organonitrate	SOA	
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Demonstra5ng	that	NO3+BVOC	produces	
substan5al	organonitrate	SOA	



Ayres	et	al.,	ACP	2015.	

Aggregate	molar	organonitrateaero	yield	~	23-44	%		
This	molar	yield	translates	to	42-81%	aggregate	mass	yield	(assumes	MW=250	g	mol-1)	

Note:	SOA	mass	yields	from	NO3	+		different	BVOCs	vary	widely!	
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Which	organonitrates	par55on	to	the	par5cle	phase?	

Lower-limit	
molar	yield:	
0.4%	
	
	
	
	
	
	
	
3%	
	
	
	
	
3%	

Larger	R2	:	perhaps	more	contribu6on	
from	NO3	chemistry?	

(d)	smaller	slope	than	(e)	:	
product	found	more	in	gas	
phase	than	par6cle	phase	

<	
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Which	organonitrates	stay	in	the	gas	phase?	
C5	(likely	isoprene-derived)	organonitrates	detected		

Not	likely	an	NO3	product!	

Likely	NO3	product,	lower	limit	
molar	7%	yield	
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Possible	chemical	structures	of	formulae	observed,	
from	β-pinene	and	isoprene	oxida5on:	

More	NO3	source	contrib: 	 	Less:				 		 	 	 		
C10H17NO5 	 	 	 	 	 	 	 	C10H15NO5	

	
	
C5H9NO5 	 	 	 	 	 	 	 	C5H9NO4	

	

X
X

X : radical oxidant

X

O2

O2

OH

ONO2

O2NO

OOH

OH

ONO2

O

ONO2

OOH
OH

ONO2

OH

ONO2

O

ONO2

OOH
OH

ONO2

OH

ONO2

O

ONO2

OOH
OH

ONO2

Obs.	in	aerosol-phase:	

Obs.	in	gas-phase:	

J.L.	Fry,	EPA	STAR	review,	14.	March	2016	



Possibility	of	hydrolysis	reac5ons:	
RONO2	=>	HNO3	

•  Remember:	hydrolysis	is	fast	for	ter5ary	nitrates	but	
slow	for	secondary	or	primary	nitrates	
–  Supported	by	chamber	expts	showing	loss	of	(selected)	
organonitrates	(Liu	et	al	2012,	Boyd	et	al	2015)	and	field	
studies	(Day	et	al	2010;	Browne	et	al	2013)	showing	high	
HNO3/RONO2	ra5o	

•  This	is	a	mechanism	by	which	par5cle-phase	nitrate	
could	be	re-released	to	gas-phase	HNO3!	

•  NOTE:	Because	of	radical	acack	mechanisms,	day5me	
(OH-ini5ated)	nitrates	are	much	more	likely	to	be	
ter5ary	than	nighsme	(NO3)	–	NO3	chemistry	makes	
organonitrates	with	more	staying	power!	

Latest	model	analysis,	post-SOAS	campaign:	organonitrates	contribute	~	
few	μg	m-3	of	surface	OA	in	summer,	mostly	from	monoterpenes,	and	again	
as	much	OA	from	hydrolysis;	Pye	et	al.,	ES&T	2015	
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And	there	are	more	possible	NOx	fates:		
Similar	magnitude	inorganic	NO3

-
(aq)	aerosol	to	organoNO3!	

organic	nitrate	
organic	nitrate	

=>	Lots	of	inorganic	nitrate	
present,	despite	very	
acidic	aerosol!	(i.e.,	favors	
HNO3(g)	produc6on)	
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Aerosol	inorganic	composi5on	is	more	episodic;	shows	two	
clear	mineral	nitrate	events:	6/12-6/14	and	6/25-6/28	

Event	#1:	
“sal5er”	

Event	#2:	
“dus5er”	

other	ca6ons	
needed	to	
balance	NO3-	

Allen	et	al.,	ACP	2015.	 J.L.	Fry,	EPA	STAR	review,	14.	March	2016	



Conclusion	based	on	high	mineral	nitrate	
concentra5ons	&	surface	area:	Uptake	of	HNO3	onto	

dust	produces	coarse-mode	inorganic	nitrate		

es5mated	rate	based	on	γ	=	0.1	
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Rela5ve	rates	of	compe5ng	NO2	loss	pathways	

1	ppb	NO3	=	2.5	ug/m3	 J.L.	Fry,	EPA	STAR	review,	14.	March	2016	
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SOAS	field	study	reac5ve	N	conclusions	

•  Nitrate	aerosol	is	an	important	component	of	ambient	PM,	
even	outside	of	urban	centers;	NO3	ini5ated	chemistry	is	
not	only	at	night	

•  Surface	concentra5ons	of	organic/inorganic	nitrate	aerosol	
were	comparable	on	average	at	SOAS	(inorganic	is	mostly	
>PM1)	

•  Campaign	avg	rate	of	organonitrate	forma5on:	0.25	ppb	
hr-1,	max	2	ppb	hr-1	;	mostly	NO3+monoterps	

•  Campaign	avg	rate	of	inorganic	nitrate	forma5on:	0.25	ppb	
hr-1,	max	3.8	ppb	hr-1;	mostly	dust	events	

•  Some	organic	nitrates	may	convert	to	HNO3	via	hydrolysis;	
NO3-ini5ated	less	likely	to	hydrolyze	than	OH-ini5ated	
products	
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Future	work:	Building	a	SOAS	SOA	budget:	How	
much	of	BVOC	losses	goes	to	OH,	O3,	NO3	

α-pinene  β-pinene  limonene           
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BVOC	loss	rate	=	kox+VOC	[ox][VOC]	



SOA	source	rate	=	YSOA	kox+VOC	[ox][VOC]	

Future	work:	Building	a	SOAS	SOA	budget:	Es5mate	
SOA	source	from	each	BVOC	rxn	with	OH,	O3,	NO3	
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•  Using	measured	
[oxidant]s,	[BVOC]s,	
and	literature	
reac5on	rates	and	
SOA	yields	

•  Assumes	MW	=	150	g	
mol-1	for	isoprene	
products,	250	g	mol-1	
for	terpene	products	

•  Losses	of	aerosol-
phase	organonitrate,	
entrainment,	
deposi5on	are	not	
taken	into	account	
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⇒  P(SOA) integrated over 
24 hr = 12 µg m-3 SOA 
produced per day 

⇒  Implies losses of 7 µg m-3 

SOA per day! 
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Future	work:	Building	a	SOAS	SOA	budget:	
Comparing	es5mated	SOA	source	with	observed	
loading	implies	rapid	losses	



Future	work:	Building	a	SOAS	SOA	budget:	Use	a	
mixed-layer	model	to	simulate	diurnal	PBL	dynamics	
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Future	work:	Building	a	SOAS	SOA	budget:	Use	a	
mixed-layer	model	to	simulate	diurnal	PBL	dynamics	
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Model	has	been	successfully	used	to	interpret	
other	field	campaigns,	e.g.	OP3	(Janssen	et	al.,	ACP	
2013);		Entrainment	figure	courtesy	R.	Janssen	&	J.	
Vilà,	Wageningen	Univ.	 J.L.	Fry,	EPA	STAR	review,	14.	March	2016	



Future	work:	Building	a	SOAS	SOA	budget	GOAL:	
accurately	simulate	SOA	sources	and	sinks	to	capture	
the	observed	(lack	of)	diurnal	varia5on	in	OA	
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Reed	SOAS	2013	team	

Graduate	
student	at	
Caltech	

Graduate	
student	at	
UC	Irvine	

Helping	Portland	
figure	out	its	airborne	
heavy	metal	problem	J.L.	Fry,	EPA	STAR	review,	14.	March	2016	


