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Aerosol formation from NO3 + isoprene: 
Field and laboratory studies on mechanism and yields
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What’s to come in this talk: 
• Why do we think that NO3 + isoprene may be 

an important contributor to atmospheric 
secondary organic aerosol (SOA)?

• Field study: Estimating SOA yields from NO3 + 
isoprene based on nighttime aircraft power 
plant plume transects during SENEX 2013

• Lab study: Yields and gas/aerosol partitioning 
of organonitrate products from NO3-initiated 
oxidation of isoprene under varied chemical 
regimes, measured at SAPHIR in Aug 2018
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Global organic carbon budgets and 
biogenic secondary organic aerosol (SOA)

Hallquist et al., ACP 2009

MEGAN model estimates 760 TgC yr-1 
global BVOC emissions, of which >60% 
is isoprene:

Sindelarova et al., ACP 2014

=> Which biogenic 
VOC precursors?
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NOx

BVOCs:

Isoprene oxidation by NO3 is fast

   O3
NO3   +
   OH

BVOCs
oxidizedVOCs

SOA

NO2 + hν           NO + O
O + O2 + M     O3 + M
NO2 + O3       NO3 + O2

NO3 + hv           NO2 + O
*NO3 is rapidly photolyzed and thus active 
primarily at night

Image credit: D. Draper

α-pinene    β-pinene  Δ-carene  limonene         

BVOC OH O3 NO3

isoprene 1.4 hr 1.3 day 48 min

α-pinene 2.7 hr 4.7 hr 5.4 min

β-pinene 1.9 hr 1.1 day 13 min

Δ-carene 1.6 hr 11 hr 3.7 min

limonene 51 min 1.9 hr 2.7 min

BVOC lifetimes w.r.t. each oxidant

@ “typical” conc’s: 12-h daytime avg [OH]: 2x106 #/cm3; 24 h avg [O3]: 7x1011 #/cm3; 12 
h nighttime avg [NO3]: 5x108 #/cm3 = 20 ppt (Atkinson & Arey, 2003)

isoprene
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isoprene
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Isoprene oxidation by NO3 is fast … but not too fast

C5H8

C10H16

C10H16

C10H16

C10H16



Isoprene dominates BVOC mix in 
summertime SEUS, coincident with aerosol 
optical depth (AOD) summer enhancement
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Surface measurements @ SOAS 2013
Ayres et al., ACP 2015

Observed 3x enhancements in summer AOD
Ford & Heald, ACP 2013
But surface enhancements are only 25-55%

LO-OOA: NO3+ terpenes, 
1/3 of SOA in SEUS! 
Xu et al., PNAS 2015.

=> Could its longer NO3 
lifetime mean [isoprene] is 
higher aloft, producing more 
SOA in the residual layer?

Carlton et al., BAMS 2019: NO3 
SOA @ SOAS is mostly from 
monoterpenes (high SOA yields).



Field study: Assess NO3 + isoprene SOA yield 
from aircraft measurements in regions of rapid 
NO3 oxidation of isoprene: power plant plumes

Gorgas steam plant, Parrish, Alabama
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SENEX 2013: 21 research flights

Warneke, et al., Atmos. Meas. Tech. 9, 2016.
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Aircraft power plant plume transects

ΔNO3,aero

Δisoprene

ΔOrgaero

Big differences in 
ammonium and sulfate 
aerosol emitted/ 
produced in different 
plumes. 
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Can we use this data to determine an SOA yield?
Verify that aerosol increases were produced only by 

NO3 + isoprene
(1)  is all of the NO3 reactivity in plumes due to reaction 

with isoprene?

(2) is all of the change in aerosol nitrate mass 
concentration due to NO3 + isoprene reactions?

✔ Based on observed 
isoprene: monoterpene ratio 
and known rate constants, yes.  
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 (2) is all of the change in aerosol nitrate mass concentration 
due to NO3 + isoprene reactions?

Previous studies report NO2
+:NO+ ratios for organic nitrates typically 2–3 times lower 

than for NH4NO3 (Fry et al., 2009, 2011; Bruns et al., 2010; Farmer et al., 2010; Liu et 
al., 2012); this can be used to apportion organic (pRONO2) vs. inorganic (NH4NO3) 
nitrate. Conclusion: no sign of signficant inorganic nitrate interference in plumes.
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Can we use this data to determine an SOA yield? YES! 
Verify that aerosol increases were produced only by 

NO3 + isoprene
(1)  is all of the NO3 reactivity in plumes due to reaction 

with isoprene?

(2) is all of the change in aerosol nitrate mass 
concentration due to NO3 + isoprene reactions?

✔ Based on observed 
isoprene: monoterpene ratio 
and known rate constants, yes.  

3: nitrate mass + associated organics, assumed to be approximately double the nitrate mass. 
Requires ~4 additional oxygens: e.g. a tri-hydroperoxynitrate

✔ Based on NO+:NO2
+ ratios, all increase 

is organic nitrate (& pRONO2 is separable)  

So, we will calculate SOA mass yields as:
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Observed SOA yields are large; higher 
at longest plume ages

=> Why more SOA in older 
plumes? Why more than 
previous chamber studies?

SOA mass yield from 
these data:
27% +/- 14%

Previous chamber-based  
SOA mass yields:
12-14%
(Ng et al., 2008; Rollins 
et al., 2009)
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Plume age estimates 
based on O3/NO2 ratio 
clock and model

Fry et al., ACP 2018



Conclusions about field-based NO3 + 
isoprene SOA yields

• NO3 + isoprene yields assessed from aircraft measurements 
increased with plume age, on average ~ 3x the previously 
chamber-measured yields, which are used in models

• Question: why haven’t previous chamber studies observed 
these larger SOA yields for NO3 + isoprene? 
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• NO3 + isoprene products may contribute 
substantially to another organic aerosol 
factor (MO-OOA) comprising 40% of total OA 
at the surface: more oxidized, day and night 
peaks



Laboratory study: To the 
SAPHIR chamber, seeking the 
chemical regime that enables 

these larger SOA yields

Preliminary results from the August 2018 NO3ISOP campaign at 
Forschungszentrum Jülich



Thermal dissociation – Cavity Ringdown 
Spectroscopy (TD-CRDS) detection of 

organic nitrates
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Species that dissociate in each oven:

Oven 1 (700 C): NO2 + ∑PANs + ∑ANs + 
HNO3 

Oven 2 (385 C): NO2 + ∑PANs  + ∑ANs

Oven 3 (130 C): NO2 + ∑PANs

“Oven” 4 (21 C): NO2 

Concentrations 
calculations:

HNO3 = Oven 1 - Oven 2

    ∑ANs = Oven 2 - Oven 3 

 ∑PANs = Oven 3 - Oven 4 

    NO2 = Oven 4 

NOTE: ammonium nitrate would also appear in the 700 C channel



4 weeks of chamber expts, Aug 2018
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• 31.07. NO3 from 5ppb NO2  and 100ppb O3, dry air
• 01.08. NO3 from 5ppb NO2  and 100ppb O3, after 3 

hours 3ppb isoprene, dry air
• 02.08. NO3 from 5ppb NO2  and 100ppb O3, after 3 

hours 3ppb isoprene, dry air
• 03.08. Humid Daytime low Nox Isoprene + nighttime 

NO3 isoprene 100pbbv/5ppb
• 06.08. Humid nighttime NO3 isoprene 100pbbv/5ppb 

Daytime low Nox
• 07.08. lower O3 NO3+ISOP  +NO3 second product 

(humidity 20%) 
• 08.08. High Ro2 production 2x isoprene + NO3 + 

second oxidation products
• 09.08. NO3 isoprene + ethene: HO2+RO2
• 10.08. Repeat lower O3 NO3+ISOP  +NO3 second 

product (dry)
• 12.08. Dry nighttime NO3 isoprene 100pbbv/5ppb + 

Daytime low Nox + CO
• 13.08. Repeat  High Ro2 production 2x isoprene + NO3 

+ second oxidation products

• 14.08. Seed aerosol, dry High isoprene + NO3 + second 
oxidation products

• 15.08. Seed aerosol humid High isoprene + NO3 + 
second oxidation products

• 16.08. Seed aerosol humid medium isoprene + NO3 + 
daytime 

• 17.08. NO2+O3, nitrate injection dry and NO2+O3 
humid: HNO3 production, nitrate injection 

• 18.08. Seed aerosol ozonolysis beta-carophyllene + 
humid medium isoprene + NO3 + daytime

• 19.08. NO3 from frozen N2O5 + medium ISOP; seed + 
2nd injection ISOP

• 20.08. Seed aerosol humid ozonolysis or NO3 
beta-carophyllene +  isoprene + NO3 + second oxidation 
products

• 21.08. Seed aerosol humid medium isoprene + NO3 + 
second oxidation products + propene

• Later bisulfate aerosol
• 22.08. Plant chamber (oak isoprene emitter) + medium 

NO3, maybe later seed aerosol
• 23.08. Seed aerosol? Reference: Isop Ozonolysis 100ppb, 

later high isoprene NO3
• 24.08. NO2+O3, Seed aerosol humid low isoprene + NO3 

+ second oxidation products

Unseeded Seeded



Example NO3+isoprene chamber data used for 
RONO2 yield & gas/aerosol partitioning
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Molar RONO2 yield is ~40%*, largely independent 
of [isoprene], seed state, RO2 regime

* Based on preliminary isoprene reacted numbers, subject to update.



derived from seeded experiments
caero: AMS; cgas: TD-CRDS, bkg Mt: SMPS
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Kp = Caero/(Cgas*Mt)

Date Experiment Regime Kp (m
3µg-1) 

Total NO3
(upper limit)

Kp (m3 µg-1) 
OrgNO3

(lower limit)

14 Aug 2018 High NO3 RO2 + RO2 1.6 ± 0.2 ×10-3 1.0 ± 0.1 ×10-3

15 Aug 2018 High NO3 RO2 + RO2 1.3 ± 0.1 ×10-3 6.0 ± 0.9 ×10-4

16 Aug 2018 Inorganic seed 
& photolysis

RO2 + RO2 Roof closed: 2.85 ×10-3

Roof opened: 2.5 ± 0.3 ×10-3
Roof closed:  1.08 × 10-3

Roof opened: 1.7 ± 0.2 × 10-3

18 Aug 2018 Organic seed 
& photolysis

RO2 + RO2 Roof closed: 4.25 ×10-3 
Roof opened: 3.4 ± 0.9 ×10-3

Roof closed:  2.02 × 10-3

Roof opened: 2.5 ± 0.3 × 10-3

19 Aug 2018 N2O5 source  1.2 ± 0.1 ×10-3 9 ± 1 × 10-4

20 Aug 2018 Organic seed 
& NO3

 2.9 ± 0.3 ×10-3 2.2 ± 0.2 × 10-3

21 Aug 2018 NO3 & HOx RO2 + HO2 1.0 ± 0.2 ×10-3 4.4 ± 0.7 × 10-4

22 Aug 2018 Plant 
emissions

Isomerization, 
then RO2 + RO2

8.5 ± 1.2 ×10-4 7.65 ± 1.1 × 10-4

23 Aug 2018  Isop+O3 seed  3.3 ± 0.7 ×10-3  1.4± 0.3 × 10-3

Bulk Kp ~ 4 × 10-4 -- 2 × 10-3 m3 µg-1

[C* ~ 500 – 2500 µg m-3]



I- CIMS measurement of individual 
nitrates
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Monomers: C5 fragments Dinitrates: C5 with 2 NO3 groups Dimers: C10 fragments



Predicted Kp’s from 
absorptive partitioning theory
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Number of Functional Groups

Product, 
MW (amu)

Theoretical Kp 
(m3 µg-1)

C NO3 OH C=O OOH R-O-O-R

5 1 -- 1 --  ICN, 145a 5.26 × 10-7

5 1 1 -- --  IHN, 147a 9.85 × 10-6

5 1 2 -- --  IDHN, 161a 1.47 × 10-3

5 1 1 1  --  IHCN, 163a 7.68 × 10-5

5 1 -- -- 1  INP, 
C5H9NO5, 163a

1.60 × 10-5

5 1 1 -- 1  IHPN, 179a 2.38 × 10-3

5 1 2 1 --  179 1.14× 10-2

5  1  1  1  1  195 1.88 × 10-2

5 2 2 -- --  IDHDN, 
C5H10N2O8, 226b

1.71 × 10-1

10 2 1 -- -- 1 C10H16N2O9, 308 2.67 × 10-1
aSchwantes et al (2015), bRollins et al (2009). Pvaps from Pankow & Asher 2008.



Are speciated nitrates consistent 
with observed bulk partitioning?
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If we assume equal sensitivity to all species, the rough relative amount of the 3 
types of nitrates from the I- CIMS are (summed signal) : 

10 mononitrate : 0.7 dinitrate : 0.2 dimer

Taking as representative of their class the theoretical Kp’s of the major 
observed mononitrate (C5H9NO5: 1.60×10-5) , dinitrate (C5H6N2O8: 1.71×10-1), 
and dimer (C10H16N2O9: 2.67×10-1), we would obtain a weighted average “bulk” 
Kp of:

Kp = (10 x 1.60×10-5 + 0.7 x 1.71×10-1 + 0.2 x 2.67×10-1)/10.9 = 5.4 x 10-2 m3 µg-1

c.f. observed range of 4 x 10-4 - 2 x 10-3 m3 µg-1

=> Bulk gas/aerosol partitioning suggests much more volatile nitrates than 
speciated measurements.

I- CIMS 
speciated

bulk

C* = 20 µg m-3 

C* = 500 - 2500 µg m-3 



Conclusions so far from chamber 
studies of NO3 + isoprene

• Organic nitrate molar yield is ~40%, independent 
of RO2 regime, seed, and [isoprene]

• Bulk gas-aerosol partitioning of nitrates is 
consistent with a species with volatility between 
C5H9NO5 and C5H10N2O8 / C10H16N2O9

• Photolysis reduces the average volatility of the 
organonitrate mix slightly

• More detailed yields and SOA analysis is pending 
final data from the chamber campaign
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