

Aerosol formation from NO₃ + isoprene:

Field and laboratory studies on mechanism and yields

Juliane L. Fry, Associate Professor of Chemistry & Environmental Studies, Reed College, Portland, OR American Chemical Society National Meeting @ San Diego, August 28, 2019

With a fantastic group of collaborators: Pete Edwards¹, Steve Brown², Ann Middlebrook², Jose Jimenez³, Doug Day³, Bellamy Brownwood⁴, Epameinondas Tsiligiannis⁵, Mattias Hallquist⁵, Avtandil Turdziladze⁶, Thorsten Hohaus⁶, Hendrik Fuchs⁶, Anna Novelli⁶, and the rest of the chamber measurement team of NO3ISOP 2018 @ SAPHIR

¹Department of Chemistry, York University; ²Chemical Sciences Division, NOAA Earth Systems Research Lab; ³Department of Chemistry, University of Colorado at Boulder; ⁴Chemistry and Environmental Studies, Reed College; ⁵Department of Chemistry and Molecular Biology, University of Gothenburg; ⁶Institute for Energy and Climate (IEK-8), Forschungszentrum Jülich

What's to come in this talk:

- Why do we think that NO₃ + isoprene may be an important contributor to atmospheric secondary organic aerosol (SOA)?
- Field study: Estimating SOA yields from NO₃ + isoprene based on nighttime aircraft power plant plume transects during SENEX 2013
- Lab study: Yields and gas/aerosol partitioning of organonitrate products from NO₃-initiated oxidation of isoprene under varied chemical regimes, measured at SAPHIR in Aug 2018

Global organic carbon budgets and biogenic secondary organic aerosol (SOA)

Isoprene oxidation by NO₃ is *fast*

$$\begin{bmatrix} NO_2 + hv \rightarrow NO + O \\ O + O_2 + M \rightarrow O_3 + M \end{bmatrix} \begin{bmatrix} NO_2 + O_3 \rightarrow NO_3 + O_2 \\ NO_2 + O_3 \rightarrow NO_3 + O_2 \\ NO_3 + hv \rightarrow NO_2 + O \end{bmatrix}$$

 $*NO_3$ is rapidly photolyzed and thus active primarily at night

BVOC lifetimes w.r.t. each oxidant

BVOC	OH	O ₃	NO_3
isoprene	1.4 hr	1.3 day	48 min
α-pinene	2.7 hr	4.7 hr	5.4 min
β-pinene	1.9 hr	1.1 day	13 min
Δ-carene	1.6 hr	11 hr	3.7 min
limonene	51 min	1.9 hr	2.7 min

@ "typical" conc's: 12-h daytime avg [OH]: 2x10⁹ #/cm³; 24 h avg [O₃]: 7x10¹¹ #/cm³; 12 h nighttime avg [NO₃]: 5x10⁸ #/cm³ = 20 ppt (Atkinson & Arey, 2003)

Isoprene oxidation by NO₃ is *fast ... but not <u>too</u> fast*

$$\begin{bmatrix} NO_2 + hv \rightarrow NO + O \\ O + O_2 + M \rightarrow O_3 + M \end{bmatrix} \begin{bmatrix} NO_2 + O_3 \rightarrow NO_3 + O_2 \\ NO_2 + O_3 \rightarrow NO_3 + O_2 \\ NO_3 + hv \rightarrow NO_2 + O \end{bmatrix}$$

*NO₃ is rapidly photolyzed and thus active primarily at night

BVOC lifetimes w.r.t. each oxidant

	BVOC	OH	0 ₃	NO ₃	
H ₈	isoprene	1.4 hr	1.3 day	48 min	
L0 ^Н 16	α-pinene	2.7 hr	4.7 hr	5.4 min	
H16	β-pinene	1.9 hr	1.1 day	13 min	
H 16	∆-carene	1.6 hr	11 hr	3.7 min	
ы <mark>Н</mark> 16	limonene	51 min	1.9 hr	2.7 min	

@ "typical" conc's: 12-h daytime avg [OH]: $2x10 \#/cm^3$; 24 h avg $[O_3]$: $7x10^{11} \#/cm^3$; 12 h nighttime avg $[NO_3]$: $5x10^8 \#/cm^3 = 20$ ppt (Atkinson & Arey, 2003)

Isoprene dominates BVOC mix in summertime SEUS, coincident with aerosol optical depth (AOD) summer enhancement

Surface measurements @ SOAS 2013 Ayres et al., ACP 2015

COA

CTR_June OA: 5.0±4.0 µg/m³ (PM₁: 7.5±5.3 µg/m³)

Carlton et al., BAMS 2019: NO₃ SOA @ SOAS is mostly from monoterpenes (high SOA yields).

MO-OOA LO-OOA: NO₃+ terpenes, HOA $\frac{1}{3}$ of SOA in SEUS! Isoprene-OA BBOA Xu et al., PNAS 2015.

Observed **3x** enhancements in summer AOD Ford & Heald, ACP 2013 But <u>surface</u> enhancements are only 25-55%

BVOC lifetimes w.r.t. each oxidant

	BVOC	OH	03	NO3
	isoprene	1.4 <u>hr</u>	1.3 day	48 min
=> Cou	ld its lor	Jger NO		5.4 min
lifetim	13 min			
higher aloft producing more				3.7 min
SOA in the residual layer?				2.7 min

Field study: Assess NO_3 + isoprene SOA yield from aircraft measurements in regions of rapid NO_3 oxidation of isoprene: power plant plumes

Gorgas steam plant, Parrish, Alabama

SENEX 2013: 21 research flights

Aircraft power plant plume transects

Can we use this data to determine an SOA yield? Verify that aerosol increases were produced only by NO_3 + isoprene

(1) is all of the NO₃ reactivity in plumes due to reaction
 with isoprene?
 Based on observed
 Based on observed

isoprene: monoterpene ratio

and known rate constants, yes.

(2) is all of the change in **aerosol nitrate mass** concentration due to NO_3 + isoprene reactions?

(2) is all of the change in **aerosol nitrate mass concentration** due to NO_3 + isoprene reactions?

Previous studies report $NO_2^+:NO^+$ ratios for organic nitrates typically 2–3 times lower than for NH_4NO_3 (Fry et al., 2009, 2011; Bruns et al., 2010; Farmer et al., 2010; Liu et al., 2012); this can be used to apportion organic (pRONO2) vs. inorganic (NH_4NO_3) nitrate. **Conclusion: no sign of significant inorganic nitrate interference in plumes.**

Can we use this data to determine an SOA yield? **YES!** Verify that aerosol increases were produced only by NO_3 + isoprene

(1) is all of the NO₃ reactivity in plumes due to reaction
 ✓ Based on observed
 ✓ Based on observed

isoprene: monoterpene ratio

and known rate constants, yes.

(2) is all of the change in **aerosol nitrate mass concentration** due to NO_3 + isoprene reactions?

✓ Based on NO⁺:NO₂⁺ ratios, all increase is organic nitrate (& pRONO₂ is separable)

So, we will calculate SOA mass yields as:

$$Y_{SOA,mass} = \frac{(pRONO2_{plume} \pm SD_{pRONO2plume}) - (pRONO2_{bkg} \pm SD_{pRONO2bkg})}{-[(isop_{plume} \pm SD_{isopplume}) - (isop_{bkg} \pm SD_{isopbkg})]} \times 3 \times \frac{329ppt}{\mu g m^{-3}}$$

3: nitrate mass + associated organics, assumed to be approximately double the nitrate mass. Requires ~4 additional oxygens: e.g. a tri-hydroperoxynitrate

Observed SOA yields are large; higher at longest plume ages

SOA mass yield from these data: 27% +/- 14%

Previous chamber-based SOA mass yields: 12-14% (Ng et al., 2008; Rollins et al., 2009)

=> Why more SOA in older plumes? Why more than previous chamber studies?

Fry et al., ACP 2018

Conclusions about field-based NO₃ + isoprene SOA yields

- NO₃ + isoprene yields assessed from aircraft measurements increased with plume age, on average ~ 3x the previously chamber-measured yields, which are used in models
- NO₃ + isoprene products may contribute substantially to another organic aerosol factor (MO-OOA) comprising 40% of total OA at the <u>surface</u>: more oxidized, day and night peaks

MO-OOA LO-OOA

soprene-OA

HOA

BBOA

COA

CTR_June OA: $5.0\pm4.0 \ \mu g/m^3$

 $(PM_1: 7.5\pm 5.3 \mu g/m^3)$

32%

18%

10%

39%

Forschungszentrum Jülich

Thermal dissociation – Cavity Ringdown Spectroscopy (TD-CRDS) detection of organic nitrates

NOTE: ammonium nitrate would also appear in the 700 C channel

4 weeks of chamber expts, Aug 2018

Unseeded

- 31.07. NO3 from 5ppb NO2 and 100ppb O3, dry air ٠
- 01.08. NO3 from 5ppb NO2 and 100ppb O3, after 3 ٠ hours 3ppb isoprene, dry air
- 02.08. NO3 from 5ppb NO2 and 100ppb O3, after 3 ٠ hours 3ppb isoprene, dry air
- 03.08. Humid Daytime low Nox Isoprene + nighttime ٠ NO3 isoprene 100pbbv/5ppb
- 06.08. Humid nighttime NO3 isoprene 100pbbv/5ppb ٠ Daytime low Nox
- 07.08. lower O3 NO3+ISOP +NO3 second product (humidity 20%)
- 08.08. High Ro2 production 2x isoprene + NO3 + ٠ second oxidation products
- 09.08. NO3 isoprene + ethene: HO2+RO2 ٠
- 10.08. Repeat lower O3 NO3+ISOP +NO3 second ٠ product (dry)
- 12.08. Dry nighttime NO3 isoprene 100pbbv/5ppb + ٠ Daytime low Nox + CO
- 13.08. Repeat High Ro2 production 2x isoprene + NO3 + second oxidation products

Seeded

- 14.08. Seed aerosol, dry High isoprene + NO3 + second • oxidation products
- 15.08. Seed aerosol humid High isoprene + NO3 + ٠ second oxidation products
- 16.08. Seed aerosol humid medium isoprene + NO3 + ٠ daytime
- 17.08. NO2+O3, nitrate injection dry and NO2+O3 ٠ humid: HNO3 production, nitrate injection
- 18.08. Seed aerosol ozonolysis beta-carophyllene + ٠ humid medium isoprene + NO3 + daytime
- 19.08. NO3 from frozen N2O5 + medium ISOP; seed + ٠ 2nd injection ISOP
- 20.08. Seed aerosol humid ozonolysis or NO3 ٠ beta-carophyllene + isoprene + NO3 + second oxidation products
- 21.08. Seed aerosol humid medium isoprene + NO3 + • second oxidation products + propene
- Later bisulfate aerosol •
- 22.08. Plant chamber (oak isoprene emitter) + medium ٠ NO3, maybe later seed aerosol
- 23.08. Seed aerosol? Reference: Isop Ozonolysis 100ppb, ٠ later high isoprene NO3
- 24.08. NO2+O3, Seed aerosol humid low isoprene + NO3 ٠ + second oxidation products

Example NO₃+isoprene chamber data used for RONO₂ yield & gas/aerosol partitioning

Time

Molar RONO₂ yield is ~40%*, largely independent of [isoprene], seed state, RO₂ regime

* Based on preliminary isoprene reacted numbers, subject to update.

$K_p = C_{aero} / (C_{gas} * M_t)$ derived from seeded experiments

c_{aero}: AMS; c_{gas}: TD-CRDS, bkg M_t: SMPS

Date	Experiment	Regime	لاہ (m³μg⁻¹) Total NO3 <mark>(upper limit)</mark>	<i>K_p</i> (m³ μg⁻¹) OrgNO3 (lower limit)	
14 Aug 2018	High NO ₃	$RO_2 + RO_2$	1.6 ± 0.2 ×10 ⁻³	1.0 ± 0.1 ×10 ⁻³	
15 Aug 2018	High NO ₃	$RO_2 + RO_2$	1.3 ± 0.1 ×10 ⁻³	$6.0 \pm 0.9 \times 10^{-4}$	
16 Aug 2018	Inorganic seed & photolysis	$RO_2 + RO_2$	Roof closed: 2.85 $\times 10^{-3}$ Roof opened: 2.5 \pm 0.3 $\times 10^{-3}$	Roof closed: 1.08×10^{-3} Roof opened: $1.7 \pm 0.2 \times 10^{-3}$	
18 Aug 2018	$ \frac{1}{8} Bulk K_{p} \sim 4 \times 10^{-4} - 2 \times 10^{-3} \text{ m}^{3} \mu \text{g}^{-1} $ $ \frac{1}{100} \text{ sed: } 2.02 \times 10^{-3} \text{ ed: } 2.5 \pm 0.3 \times 10^{-3} \text{ ed: } 2.5 $				
19 Aug 2018	N ₂₋₅			± 1 × 10 ⁻⁴	
20 Aug 2018	Organic seed & NO ₃		2.9 ± 0.3 ×10 ⁻³	2.2 ± 0.2 × 10 ⁻³	
21 Aug 2018	NO ₃ & HO _x	$RO_2 + HO_2$	1.0 ± 0.2 ×10 ⁻³	$4.4 \pm 0.7 \times 10^{-4}$	
22 Aug 2018	Plant emissions	Isomerization, then $RO_2 + RO_2$	8.5 ± 1.2 ×10 ⁻⁴	7.65 ± 1.1 × 10 ⁻⁴	
23 Aug 2018	Isop+O ₃ seed		$3.3 \pm 0.7 \times 10^{-3}$	1.4± 0.3 × 10 ⁻³	

I- CIMS measurement of individual nitrates

Monomers: C_5 fragments **Dinitrates**: C_5 with 2 NO₃ groups

Dimers: C₁₀ fragments

Are speciated nitrates consistent with observed bulk partitioning?

If we assume equal sensitivity to all species, the rough relative amount of the 3 types of nitrates from the I- CIMS are (summed signal) :

10 mononitrate : 0.7 dinitrate : 0.2 dimer

Taking as representative of their class the theoretical Kp's of the major observed mononitrate $(C_5H_9NO_5: 1.60 \times 10^{-5})$, dinitrate $(C_5H_6N_2O_8: 1.71 \times 10^{-1})$, and dimer $(C_{10}H_{16}N_2O_9: 2.67 \times 10^{-1})$, we would obtain a weighted average "bulk" K_p of:

=> Bulk gas/aerosol partitioning suggests much more volatile nitrates than speciated measurements.

Conclusions *so far* from chamber studies of NO₃ + isoprene

- Organic nitrate molar yield is ~40%, independent of RO₂ regime, seed, and [isoprene]
- Bulk gas-aerosol partitioning of nitrates is consistent with a species with volatility between
 C₅H₉NO₅ and C₅H₁₀N₂O₈ / C₁₀H₁₆N₂O₉
- Photolysis reduces the average volatility of the organonitrate mix slightly
- More detailed yields and SOA analysis is pending final data from the chamber campaign

Thank you:

- Collaborators for the NO₃ + isoprene analysis @ NOAA ESRL Chemical Sciences Division & CU Boulder
- Funding:

Want to talk more? Julie Fry: <u>fry@reed.edu</u>

NOAA AC4 #NA13OAR4310070; EPA STAR Program #RD-83539901; European Research Council (ERC) Horizon 2020 (SARLEP grant agreement No. 681529 & Eurochamp 2020 grant agreement No.730997); Reed College Opportunity Grant

