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Reminder of Earth’s Energy Balance
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What'’s doing the greenhouse-ing?

RapiaTive FoRcING COMPONENTS
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(CH,), nitrous oxide (NO) and other important agents and machanisms, together with the typical geographical axtfent (spatial scale) of
the forcing and tha assassed loval of sciantific undarstanding (LOSU). The nat anthropogenic radiative farcing and its mnge are also



The elephant in the atmosphere: CO,

* 2010 peak CO, at Mauna Loa: 391 ppm
* Seasonal wiggle of about 2 ppm: biosphere “breathing”

— Summer CO, drawdown:

CO, + H,0 + sunlight — O, + plant biomass (photosynthesis)
— Winter CO, release: plant decay — CO,

| Atmospheric Carbon Dioxide | |
Measured at Mauna Loa, Hawaii i
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Fate of atmospheric CO,

Annual anthropogenic CO, inputs ~ 7 Gt C per year, of
which only ~ 4.7 Gt remains in atmos.

Where does the rest go?
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Fate of atmospheric CO,

Annual anthropogenic CO, inputs ~ 7 Gt C per year, of
which only ~ 4.7 Gt remains in atmos.

Where does the rest go?
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Fate of atmospheric CO,

Annual anthropogenic CO, inputs ~ 7 Gt C per year, of
which only ~ 4.7 Gt remains in atmos.

Where does the rest go?

CO, sink to forests is
Atmosphere (total stored ~800 Gt)

poorly quantified!

) ) Net loss of 0.9 Net loss of 2.2
Varies with tree age; e =t
lifetime in biomass

. 1.5 24
poorly constrained

Tropical forests and atmospheric
carbon dioxide

. Malk Oceans
Yadvinder Mzlhi and John Grace (total stored ~38,000 Gt)
Tropical forests play a major role in determining the current atmospheric

concentration of CO,, as both sources of CO, following deforestmoﬂ and smks of

CO; probably resulting from CO, stimul of forest ph y is. R
researchers have tried to quantify thls role. The results suggest that both the cavboﬂ
sources and sinks in tropical forests are significantly greater than previously thought. I
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The warming components:
Empirical understanding of GHG radiative forcing
1. Concentrations
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The warming components:
Empirical understanding of GHG radiative forcing
2. Formulae

Table 1. Expressions for Calculating Radiative Forcing*
Simplified Expression

Trace Gas Radiative Forcing, AF (Wm™) Constant
o, AF = aln(C/C,) =535
CHa AF = B(M* - M_") - [{(MN,) - {(M_,N_)] 8 =0.036
N,O AF = (N - N_") - [{(M_N) - {(M_N,)] £=0.12
CFC-11 AF =A(X-X) A=0.25
CFC-12 AF =o(X-X) ®=0.32

*IPCC (2001)
The subscript "0" denotes the unperturbed (1750) concentration
f(M,N) = 0.47In[1 +2.01x10™° (MN)°7® + 5.31x107"*M(MN)" 2]

Cis CO, in ppm, M is CHg4 in ppb
N is N2O in ppb, X is CFC in ppb

Co =278 ppm, M0 =700 ppb, No =270 ppb, Xo =0

http://www.esrl.noaa.gov/gmd/aggi/



The warming components:
Empirical understanding of GHG radiative forcing
3. Historical forcing trends
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CO,: biggest driver. How much warming?
“Climate sensitivity”

= Expected equilibrium T increase if [CO,] levels off at double pre-industrial (550ppm)

CuMULATIVE DISTRIBUTIONS OF CLIMATE SENSITIVITY
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Figure TS.25. Cumulative distnibutions of climate sensitivity den'ved from observed 20th-century warming (red), model climatology (biue),
proxy evidence (cyan) and from climate sensitivities of AOGCMs (green). Honzontal lines and amows mark the boundanies of the iikellhood
estimates defined in the IPCC Fouwrth A Uncertainty Guid: Note (see Box TS.1). {Box 10.2, Figures 1 and 2}

Equilibrium climate sensitivity (ECS): “Global annual mean surface air
temperature change experienced by the climate system after it has attained
equilibrium in response to a doubling of atmospheric CO,.” IPCC, 2007

What limits accuracy of climate sensitivity estimates
using 20th century temperature trends?

= Uncertainty in aerosols!
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CO, and other GHG warming has been offset by an highly uncertain
aerosol forcing in the cooling direction.



Different types of Aerosols
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Source: Terra/MODIS satellite

Kuwait

http://visibleearth.nasa.gov

Spjgce:Terra/MODlS atett

Examples of Aerosol Indirect Effects on Clouds



Sulfate Cooling Mid 20th Century

Aerosol direct effect thought to explain temporary hiatusin T
increase

0.8 T T T T T T T T T T T T T T

GLOBAL

0.4

0.0

Departures in temperature (°C)
from the 1961 to 1990 average

| Data from thermometers.

~0.8 | L | I | ! | I | 1 |
1860 1880 1900 1920 1940 1960 1980 2000
Year
Copyright © 2004 Pearson Prentice Hall, Inc.

Could cleaning up airborne
particulates accelerate warming?

ATMOS
- Measures to control emissions of air pollutant:
Clean the Air, Heat the Planet? may have unintended cimatic onsequences.

Almut Ameth,"** Nedine Unger,” Markku Kulmal

ERIC SCIENCE
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008 Olvry How will air pollution measures
affect global climate?
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must account for a very com-
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Might we want to keep those particles
aloft?? Or even ... add more?



Observations of a changing climate

Temperature trends

GLoOBAL TEMPERATURE TRENDS
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Land warming
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oceans (recall
thermal inertia)
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Attribution: Temperature trend can only be
modeled with anthropogenic contribution

GLosAL AND CONTINENTAL TEMPERATURE CHANGE
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Cryosphere trends
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Snows of Kilimanjaro

February 17, 1993

February 17, 1993

February 21, 2000

February 21, 2000




Sea level (mm)

Shrinking polar ice caps

Global Mean Sea Level Measurements
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Precipitation trends

GLoBAL MEAN PRECIPITATION
Over the 20t century:

Trend in Annual PRCP, 1901 to 2005
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Projected future precipitation changes
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Hurricane Intensity Change

Idealized hurricane simulations

Aggregate results: 9 GCMs, 3 basins, 4 parameterizations, 6-member ensembles
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but .... areas downwind of Iceland have
recently cooled ...
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SO .... is this an option?

GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L02809, doi:10.1029/2007GL032179, 2008
sk
for
Full
Article

Exploring the geoengineering of climate using stratospheric
sulfate aerosols: The role of particle size

Philip J. Rasch,’ Paul J. Crutzen,>* and Danielle B. Coleman’
Received | October 2007; revised 26 November 2007; accepted 19 December 2007; published 26 January 2008.

[11 Aerosols produced in the lower stratosphere can impacts. The first response of society to this evidence ought
brighten the planet and counteract some of the effects of to be to reduce greenhouse gas emissions, but a second step
global warming. We explore scenarios in which the amount might be to explore strategies to mitigate some of the

of p X 206;
thein Estimates: Need 1 —5 Tg S/yr to negate Doubled CO, hack
IOPUspIUIL vAvLGUEY pIuvvwsosus VHGHEY I IUSPULISV W W DRIYAU |12 1T], WY Spuiienas was @ uuioviae proQUC-

greenhouse gas forcing and respond to geoengineering by  tion of stratospheric aerosols might increase the planetary
aerosols. Nonlinear feedbacks influence the amount of albedo, and cool the planet, ameliorating some (but not all)
aerosol required to counteract the wamming. More aerosol  of the effects of increasing CO» concentrations.

Extras



Reminder of Earth’s Energy Balance

Black Body Emission Curves of the Sun and Earth
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Reminder of Earth’s Energy Balance

Black Body Emission Curves of the Sun and Earth
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Sea level (mm)
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Global Mean Sea Level Measurements
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Sea Level Projections
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Bangladesh Under 1 Meter Sea Level Rise
Potential impact of sea-level rise on Bangladesh

Today
Total population: 112 Million
\\ Total land area: 134,000 km?
Sk = Dacca -

1.5 m - Impact
Total population affected: 17 Million (15%)
Total land area affected: 22,000 km? (16%)
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Sourcs - UNEP/GRID Geneva; University of Dacca; JRO Munich. The World Banic Worid Resources Institute, Washington D.C.



Mosquito-borne
diseases

Malaria
Plasmodium vivax

Base-line climate

No risk - T 2

No risk > i

Doubling — [ “#ta ..
of the risk I "
No change — 5}
in risk s
G .

Potential malaria risk areas for base-line climate conditions (1831-
1980) and for a global mean temperature increase of 1.16°C (based
on the climate patterns generated by the ECHAM1-A GCM) and
changes in average annual “epidemic potential’ (EP), a measure of
vectorial capacity, relative to base-line climate, for P. vivax.

Source: Martens, P. et al. é!e‘?ss&::s%tsmial impacts of climate change on malaria risk. Environme

Health Perspectives, 103(5)



